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Introduction. In the differential geometry of surfaces the1st and2nd fundamental
forms give rise at each point on Σ to a pair of real symmetric 2 × 2 matrices,
G and H, of which the former—which provides a description of ds2—is invariably
positive-definite but the latter sometimes isn’t. The local Gaussian curvature
of Σ can be described

K = det H
det G

so at points of negative curvature H is in fact negative-definite. Familiarly, the
eigenvalues of such matrices are necessarily real, and (in the absence of spectral
degeneracy) the associated eigenvectors necessarily orthogonal. So naturally
associated with every such matrix is an orthogonal “eigenbasis” in V2. But
negative-definite matrices give rise also (as explained below) to an equally
natural non-orthogonal basis, the elements of which in differential geometry
indicate “self-conjugate” or “asymptotic” directions. It is thus from differential
geometry that I have acquired an interest in the representation of vectors and
linear operators with respect to non-orthogonal bases.

The discussion will bring into play the “dual” of any given non-orthogonal
basis, and will establish the sense in which a basis and its dual are“biorthogonal.”
Accidental simplifications arise in the low-dimensional cases of highest practical
interest; those are of interest in their own right, but tend to obscure the
essentials of the general theory. I look initially therefore to the case Vn, and
only after the general principles are in place to the cases V2 and V3. I had
occasion long ago to visit this general subject area. My motivation, emphasis
and notation were on that occasion (where the arena was V∞) quite different,
but I will from time to time have occasion to refer to that work.1

Management of non-orthogonal bases: general principles. Let {|ai)} be linearly
independent elements that span the real inner product space Vn. In the absence
of an orthogonality assumption, we write

(ai|aj) = gij (1)
where ‖gij‖ is real, symmetric and (by linear independence) non-singular. The

1 “Reciprocal systems of non-orthogonal quantum states,” (June, 1998).
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generic element |x)∈Vn can be developed

|x) = |ak)xk (2)

which gives
(aj |x) = gjkxk

Writing ‖gij‖–1 = ‖gij‖ we have

gij(aj |x) = gijgjkxk = δi
kxk = xi (3)

giving
|x) = |ai)gij(aj |x) : all |x)

from which we conclude that

|ai)gij(aj | = I (4)

Introduce now into Vn a second non-orthogonal “dual” basis with elements

|Aj) = |ai)gij equivalently (Ai| = gij(aj | (5)

which supply this alternative constructiuon of the unit matrix

|ai)(Ai| = I (6)

We have
(Ai|aj) = gik(ak|aj) = gikgkj = δi

j (7.1)

which is to say:
|Ai) ⊥ all |aj) : j $= i (7.2)

It is on these grounds that the non-orthogonal bases {|ai)} and {|Aj)} are said
to be “biorthogonal” (or “reciprocal”).2

Look now to the matrices

Pi = |ai)(Ai| : no summation on i (8)

where the index placement on Pi is merely conventional (intended to convey no
transformation-theoretic meaning). Those are seen to be orthogonal projection
matrices

PiPj = |ai)(Ai|aj)(Aj | = |ai)δi
j(A

j | =
{

Pi : i = j
O : i $= j

(9)

and were already seen at (6) to be complete:
∑

i Pi = I . That they project

2 When {|ai)} is in fact orthonormal (gij = δij) the distinction between
{|ai)} and {|Ai)} evaporates.
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onto 1-spaces (rays in Vn) can be established as follows: let {|ek)} refer to any
orthonormal basis in Vn. Then

trPi =
∑

k(ek|Pi|ek) =
∑

k(ek|ai)(Ai|ek)
=

∑
k(Ai|ek)(ek|ai)

= (Ai|ai)
= 1 (10)

Specifically,

right action: Pi|x) = |ai)xi

left action: (x|Pi = xi (Ai|

}
: no summation on i

the point here being that for non-symmetric matrices we must distinguish
between their right action and their left action (i.e., between the action of
the matrix and its transpose).

Given an arbitrary square matrix M , we have

M = I M I
=

∑
ij Pi M Pj

=
∑

ij |ai)(Ai|M |aj)(Aj |
=

∑
ij mi

j |ai)(Aj | where mi
j = (Ai|M |aj) (11)

Here M is displayed as a weighted linear combination

M =
∑

ijm
i
j F j

i (12)

of the n2-member population of matrices

F j
i = |ai)(Aj | (13)

More particularly, ‖mi
j‖provides the matrix representation of M with respect to

the non-orthogonal {|ai)}-basis; it permits |x) → |x̃) = M |x) to be represented

xi → x̃i = mi
jx

j (14)

From
tr

[
F j

i F q
p

]
=

∑
k(ek|ai)(Aj |ap)(Aq|ek)

=
∑

k(Aq|ek)(ek|ai)(Aj |ap)

= δ q
i (Aj |ap)

= δ q
i δ j

p

=
{ 1 : q = i and p = j

0 : otherwise
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we see that the F-matrices are tracewise orthogonal in the following sense:

tr
[
F j

i F̄q
p

]
=

{ 1 : {i, j} = {q, p}
0 : otherwise

(15)

where
F̄q

p = F q
p (16)

It follows that if
M =

∑
ijm

i
j F j

i

then
mi

j = tr
[
MF̄ i

j

]

whence the “Fourier identity”3

M =
∑

ijtr
[
MF̄ i

j

]
F j

i (17)

From
F p

i F j
q = δp

q F j
i (18)

we see that the set {F j
i } is multiplicatively closed, that F p

i ⊥ F j
q unless p = q.

The “diagonal members” F i
i of {F j

i } are precisely the projective P-matrices
considered previously:

Pi = F i
i (19)

From (16) we have P̄i = Pi, while from (15) follows the tracewise orthogonality
of those matrices:

tr
[
PiPj

]
= δij (20)

Generalized spectral decomposition. Assume—simply to keep simple things
simple—that the eigenvalues of our otherwise arbitrary real square matrix M
are real and distinct:4

M |mi) = λi|mi) (21)

Proceed as before to construct the elements

|M j) = |mi)gij equivalently (M i| = gij(mj |

of the dual {|M i)} of the eigenbasis {|mi)}. The argument that led to (11) now
supplies

M =
∑

ij |mi)(M i|M |mj)(M j |
=

∑
ij |mi)λi δ

i
j(M

j |
=

∑
i λi|mi)(M i| (22.1)

=
∑

i λi Pi (22.2)

3 In all occurances of analogs of Fourier’s identity one of the basis elements
enters either conjugated or transposed or adjointed or otherwise goofy.

4 Both assumptions are easily relaxed.
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At (17) M was presented as a weighted sum of the n2 elements of {Fij},
all but the “diagonal elements” of which5 are non-projective. At (22.2) it is, on
the other hand, presented as a weighted sum of the n elements of {Pi}, all of
which are projective.

Look to the special cases in which M is symmetric: M T = M. The reality
of the eigenvalues is then automatic/assured, and so (if we assume spectral
non-degeneracy) is the orthogonality of the eigenvectors. Assume without loss
of generality that the eigenvectors have been normalized:

(mi|mj) = δij

Then (M i| = (mi| and (22.1) becomes

M =
∑

i λi|mi)(mi|

which is familiar as the “spectral decomposition” of the symmetric matrix M.
Equations (22) demonstrate how the essential features/advantages of
spectral decompositions can be preserved even when the familiar assumptions
(symmetry/hermiticity/self-adjointness) have been abandoned.

Alternative constructions of the dual basis. In order once again to “keep simple
things simple,” to avoid notational clutter that would obscure the simple essence
of the ideas at issue, we work in V3; how those ideas are to be realized in Vn

will be obvious. Let the elements of an arbitrary unnormalized non-orthogonal
basis in V3—denoted

aaa =




a1

a2

a3



 , bbb =




b1

b2

b3



 , ccc =




c1

c2

c3





be displayed as columns of a square matrix

B = ‖aaa bbb ccc‖ =




a1 b1 c1

a2 b2 c2

a3 b3 c3





and let {AAA,BBB,CCC } refer to the rows of B –1 :

B –1 =

∥∥∥∥∥∥

AAA
BBB
CCC

∥∥∥∥∥∥
=




A1 A2 A3

B1 B2 B3

C1 C2 C3





From B –1B = I we see that the sets {aaa, bbb, ccc} and {AAA,BBB,CCC } reproduce the
defining property (Ai|aj) = δi

j of {|ai)} and {(Ai|}, which is to say: they are
biorthogonal. Specifically (by Mathematica -assisted calculation)

5 Those might be called the “self-conjugate” elements, since F̄ j
i = F j

i if and
only if i = j.
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AAA = bbb × ccc
(aaabbbccc)

BBB = ccc × aaa
(aaabbbccc)

CCC = aaa × bbb
(aaabbbccc)

where (aaabbbccc) denotes the triple scalar product

aaa···(bbb × ccc) = det B

These results—which are, of course, specific to V3—make biorthogonality
(AAA ⊥ bbb, ccc ; BBB ⊥ ccc, aaa ; CCC ⊥ aaa, bbb) obvious, and are standard to the physical/
mathematical theories of chrystallographic lattices.6

From B –1B = I ⇒ B T(B –1)T = I we see that the dual of the dual basis is
the original (or “direct”) basis.

Alternatively, observe that

B TB =




aaa···aaa aaa···bbb aaa···ccc
bbb···aaa bbb···bbb bbb···ccc
ccc···aaa ccc···bbb ccc···ccc



 = ‖gij‖

gives

(B TB)–1 =




gaa gab gac

gba gbb gbc

gca gcb gcc





whence7

B(B TB)–1 = ‖aaa bbb ccc‖




gaa gab gac

gba gbb gbc

gca gcb gcc





= ‖(aaagaa + bbbgba + cccgca) (aaagab + bbbgbb + cccgcb) (aaagac + bbbgbc + cccgcc)‖
= ‖AAA BBB CCC ‖
= (B –1)T ≡ A

We see that a matrix inversion—whether of ‖gij‖, B or B TB—is required
however one proceeds to obtain the elements of the dual basis.

Basis transformations. Let {|bi)} and {|Bi)} refer to a second non-orthogonal
basis and its dual. Writing (bi|bj) = ḡij we have as before (Bi|Bj) = ḡij ,
(bi|Bj) = (Bj |bi) = δ j

i and
∑

i |bi)(Bi| =
∑

i |Bi)(bi| = I . We are placed in

6 See §3, pages 5–10 in the essay previously mentioned,1 and references cited
there.

7 See again (5).
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position therefore to write

|x) = |ai)xi = |bi)x̃i

x̃i = (Bi|x) = (Bi|aj)(Aj |x)
= (Bi|aj)x j

= S i
jx

j : S i
j ≡ (Bi|aj)

x̃xx = S xxx (23.1)

Similarly

m̃i
j = (Bi|M|bj) = (Bi|ap)(Ap|M|aq)(Aq|bj)

= S i
p mp

qT
q
j : T i

j ≡ (Ai|bj)

M̃ = S M T

From S T = ‖(Bi|ak)(Ak|bj)‖ = ‖(Bi|bj)‖ = ‖δi
j‖ = I we have T = S –1, so

M → M̃ by similarity transformation

M̃ = S M S –1 (23.2)

from which it follows in particular that M and M̃ have identical spectra.

The projection matrices Pi that appear in the spectral decomposition (22)
of M were assembled from (designed to project onto) the eigenrays of M .
Looking to the arbitrary transform of M mmmi = λimmmi we have

S M S –1· S mmmi = λiS mmmi : M̃ m̃mmi = λim̃mmi with m̃mmi = S mmmi

which states simply that “being an eigenvector of” refers to a representation-
independent state of affairs. So also does the spectral decomposition:

M̃ =
∑

iλi P̃i with P̃i = S Pi S –1

We observe finally that

ḡij ≡ (bi|bj) = (bi|Ap)(ap|aq)(Aq|bj) = (bi|Ap)gpq(Aq|bj)

gives ‖ḡij‖ = T T‖gpq‖T (23.3)

2-dimensional generalities. As was remarked at the outset, it is as it relates to
V2 that the material discussed above acquires direct relevance to the differential
geometry of surfaces. We look now, in a general way, to the specifics of the
2-dimensional case, taking full advantage of the simplifications that become
available in that case; those have to do with the circumstance that all general
results can be made notationally explicit, and with the ease with which square
matrices can in two dimensions be inverted.
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Let
|a1) =

(
α1

α2

)
, |a2) =

(
β1

β2

)
(24.1)

refer to an arbitrary unnormalized non-orthogonal basis in V2. Then

g11 = α2
1 + α2

2

g12 = g21 = α1β1 + α2β2

g22 = β2
1 + β2

2





(24.2)

G =
(

g11 g12

g21 g22

)
(24.3)

g ≡ det G = (α1β2 − α2β1)2 (24.4)

G –1 =
(

g11 g12

g21 g22

)
= g–1

(
g22 −g12

−g21 g11

)
(24.5)

|A1) = |a1)g11 + |a2)g21 = 1
α1β2 − α2β1

(
β2

−β1

)

|A2) = |a1)g12 + |a2)g22 = 1
α1β2 − α2β1

(
−α2

α1

)





(24.6)

The construction (24.6) of the basis {|Ai)} dual to {|ai)}—obtained here by
specialization of (5)—is in fact an immediately forced direct consequence of the
biorthogonality conditions |A1) ⊥ |a2), |A2) ⊥ |a1), (A1|a1) = (A2|a2) = 1. The
labor that went into the construction of (24.6) was therefore hardly necessary,
but yielded a result that (as we verify) does conform to

(Ai|aj) = δi
j (24.7)

With Mathematica’s assistance we verify that the matrices

P1 = 1
α1β2 − α2β1

(
α1β2 −α1β1

α2β2 −α2β1

)

P2 = 1
α1β2 − α2β1

(
−α2β1 α1β1

−α2β2 α1β2

)





(25.1)

comprise a complete
P1 + P2 = I (25.21)

set of orthogonal
P1P2 = P2P1 = O (25.22)

projection matrices
P1P1 = P1, P2P2 = P2 (25.23)

and that they are trace-wise orthogonal:

tr
[
PiPj

]
= δij (25.3)
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Given an arbitrary element |x)∈V2

|x) =
(

ξ1

ξ2

)
(26.1)

we have

|x) = |a1)x1 + |a2)x2 with






x1 = (A1|x) = − β1 ξ2 − β2 ξ1

α1β2 − α2β1

x2 = (A2|x) = α1 ξ2 − α2 ξ1

α1β2 − α2β1

(26.2)

Given an arbitrary real square matrix

M =
(

a b
d c

)
(27.1

we by (11) have

M = m1
1F 1

1 + m1
2F 2

1 + m2
1F 1

2 + m2
2F 2

2 : F j
i ≡ |ai)(Aj | (27.2)

where
F 1

1 = P1

F 2
1 = 1

α1β2 − α2β1

(
−α1α2 α1α1

−α2α2 α2α1

)

F 1
2 = 1

α1β2 − α2β1

(
β1 β2 −β1 β1

β2 β2 −β2 β1

)

F 2
2 = P2






(27.3)

are—as Mathematica confirms—tracewise orthogonal in the sense that

tr
[
F j

i F q
p

]
= δ q

i δ j
p (27.4)

By computation

m1
1 = (A1|M|a1) = tr

[
MF 1

1

]
= g−

1
2
[

α1(aβ2 − dβ1) − α2(cβ1 − bβ2)
]

m1
2 = (A1|M|a2) = tr

[
MF 1

2

]
= g−

1
2
[
(a − c)β1β2 + bβ2β2 − dβ1β1

]

m2
1 = (A2|M|a1) = tr

[
MF 2

1

]
= g−

1
2
[
(c − a)α1α2 − bα2α2 + dα1α1

]

m2
2 = (A2|M|a2) = tr

[
MF 2

2

]
= g−

1
2
[
− β1(aα2 − dα1) + β2(cα1 − bα2)

]

which check out when introduced into (27.2), so we have the Fourier expansion

M = tr
[
MF 1

1

]
F 1

1 + tr
[
MF 1

2

]
F 2

1 + tr
[
MF 2

1

]
F 1

2 + tr
[
MF 2

2

]
F 2

2

We verify also that

det
(

m1
1 m1

2

m2
1 m2

2

)
= ac − bd = det M

It is interesting in this light to notice that setting d = b symmetrizes M but
does not symmetrize ‖mi

j‖.
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Reformulations for geometric applications. We take now into account the fact
that the matrices G and H of differential geometric interest are symmetric, and
(to minimize the number of free parameters) exercise our option to work only
witn normalized vectors.

Let
|a1) =

(
cos α
sin α

)
, |a2) =

(
cos β
sin β

)
(28.1)

refer to an arbitrary normalized basis in V2. Immediately

‖gij‖ =
(

1 cos(α − β)
cos(α − β) 1

)
and det ‖gij‖ = sin2(α − β)

The elements of the dual basis could be obtained from (5) or by either of the
(equivalent) methods described on pages 5–6, but it is easiest to proceed from
the requirements that |A1) ⊥ |a2), (A1|a1) = 1 and |A2) ⊥ |a1), (A2|a2) = 1,
which give

|A1) = k

(
− sin β
cos β

)
, k = + csc(α − β)

|A2) = k

(
− sin α
cos α

)
, k = − csc(α − β)

whence

|A1) = csc(α − β)
(
− sin β
cos β

)
, |A2) = csc(α − β)

(
sin α

− cos α

)
(28.2)

By Mathematica -assisted computation we find from F j
i = |ai)(Aj | that

P1 = F 1
1 = csc(α − β)

(
− cos α sin β cos α cos β
− sin α sin β sin α cos β

)

F 2
1 = csc(α − β)

(
cos α sin α − cos2 α

sin2 α − cos α sin α

)

F 1
2 = csc(α − β)

(
− cos β sin β cos2 β
− sin2 β cos β sin β

)

P2 = F 2
2 = csc(α − β)

(
cos β sin α − cos β cos α
sin β sin α − sin β cos α

)






(28.3)

and verify that those matrices satisfythe trace relations (27.4), also that {P1, P2}
comprise a complete orthogonal set of tracewise-orthonormal projection
matrices.

Look now to the symmetric matrix

M =
(

a b
b c

)
(29.1)

From the characteristic polynomial

det(M − λI) = λ2 − λtrM + det M
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we obtain eigenvalues

λ± = 1
2

[
trM ±

√
tr2 M − det M

]

= 1
2

[
(a + c) ±

√
(a − c)2 + 4b2

]
(29.2)

(henceforth denoted λ1 and λ2, respectively) that are manifestly real, and that
are of the same or opposite signs according as det M = λ1λ2 = ac − b2 is ≷ 0.
These results will come into play shortly.

The associated eigenvectors are well known to be (in the absence of spectral
degeneracy) invariably orthogonal, and—since assumed to have been normalized
—can be parameterized

|m1) =
(

cos φ
sin φ

)
, |m2) =

(
− sin φ
cos φ

)
= |m1)

∣∣∣
φ→φ+ 1

2 π
(29.31)

Orthonormality means gij = δij , gij = δij , so the distinction between the basis
and its dual evaporates2

|M1) = |m1), |M2) = |m2) (29.32)

and from F j
i = |mi)(M j | we obtain

P1 = F 1
1 =

(
cos2 φ cos φ sin φ

cos φ sin φ sin2 φ

)

F 2
1 =

(
− cos φ sin φ cos2 φ
− sin2 φ cos φ sin φ

)

F 1
2 =

(
− cos φ sin φ − sin2 φ

cos2 φ cos φ sin φ

)

P2 = F 2
2 =

(
sin2 φ − cos φ sin φ

− cos φ sin φ cos2 φ

)






(29.4)

and verify that those matrices do possess all the anticipated properties. By
computation

m1
1 = (M1|M |m1) = a cos2 φ + 2b cos φ sin φ + c sin2 φ

m1
2 = (M1|M |m2) = b cos 2φ − 1

2 (a − c) sin 2φ

m2
1 = (M2|M |m1) = b cos 2φ − 1

2 (a − c) sin 2φ

m2
2 = (M2|M |m2) = a sin2 φ − 2b cos φ sin φ + c cos2 φ






(29.5)

We observe that these results could have been obtained from
(

m1
1 m1

2

m2
1 m2

2

)
= RMR –1 where R is the rotation matrix

(
cos φ sin φ

− sin φ cos φ

)

The normalized eigenvectors of M emerge when φ is assigned a value that
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diagonalizes ‖mi
j‖. From

m1
2 = m2

1 = b cos 2φ − 1
2 (a − c) sin 2φ = 0

we obtain
φ = 1

2 arctan
[ 2b
a − c

]
(29.6)

which with Mathematica’s assistance is found to give8

m1
1 = λ1

m2
2 = λ2

From (29.6) we obtain8

cos φ =
√

1
2

(
1 + a − c√

D

)

sin φ =
√

1
2

(
1 − a − c√

D

) : D = (a − c)2 + 4b2 (29.7)

and by tedious calculation verify that

(
cos φ sin φ
− sin φ cos φ

) (
a b
b c

) (
cos φ − sin φ
sin φ cos φ

)

=
( 1

2

[
(a + c) +

√
D

]
0

0 1
2

[
(a + c) −

√
D

]
) (29.8)

Bringing (29.7) to (29.4) we obtain

P1 =




1
2

(
1 + a − c√

D

)
1
2

(
1 − (a − c)2

D

)

1
2

(
1 − (a − c)2

D

)
1
2

(
1 − a − c√

D

)





P2 =




1
2

(
1 − a − c√

D

)
− 1

2

(
1 − (a − c)2

D

)

− 1
2

(
1 − (a − c)2

D

)
1
2

(
1 + a − c√

D

)










(29.9)

and verify that

M = 1
2

[
(a + c) +

√
D

]
P1 + 1

2

[
(a + c) −

√
D

]
P2 (29.10)

Which is far more than any sane person could possibly want to know about the
spectral theory of real 2 × 2 symmetric matrices, and is of conceivable interest
only as it relates comparatively to the topic to which I now turn.

8 Use TrigToExp and Simplify.
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Look to the conditions under which the normalized vector

|a) =
(

cos ψ
sin ψ

)

satisfies
(a|M |a) = 0 (30.1)

Immediately

tanψ = −b ±
√

b2 − ac
c

(30.2)

which is real if and only if det M = ac − b2 < 0.9 Such “asymptotic” vectors
occur, therefore, in conjugate pairs

|a1) =
(

cos ψ1

sin ψ1

)
, |a2) =

(
cos ψ2

sin ψ2

)
(30.3)

where ψ1 and ψ2 are given by

ψ± = arctan
[−b ±

√
b2 − ac

c

]
(30.4)

respectively. From

‖gij‖ = ‖(ai|aj)‖ =
(

1 cos ω
cos ω 1

)
(30.5)

cos ω = (a1|a2) = cos(ψ1 − ψ2)
ω = subtended angle

we see that {|a1), |a2)} comprises a typically10 non-orthogonal basis in V2. We
look therefore to the construction of the dual basis {|A1), |A2)}. From (30.5)
we have

‖gij‖ = csc2 ω

(
1 − cos ω

− cos ω 1

)

so (5)—after simplifications—gives

|A1) = csc ω

(
− sin ψ2

cos ψ2

)
, |A2) = csc ω

(
sin ψ1

− cos ψ1

)
(30.6)

9 We exclude the uninteresting case ac − b2 = 0.
10 From arctan y = arctan x ± 1

2π we obtain y = −1/x, so ψ2 = ψ1 ± 1
2π

reads
−b −

√
b2 − ac

c
= − c

−b +
√

b2 − ac

which entails (a + c)c = 0. We verify that the eigenvectors of M are in fact
orthogonal if either a = −c or c = 0. In the former case the eigenvalues are
λ± = ±

√
b2 + c2, in the latter case λ± = ±b; in both cases they differ only by

sign.
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Working from (8), we find

P1 = |a1)(A1| = csc ω

(
− cos ψ1 sin ψ2 cos ψ1 cos ψ2

− sin ψ1 sin ψ2 sin ψ1 cos ψ2

)

P2 = |a2)(A2| = csc ω

(
cos ψ2 sin ψ1 − cos ψ2 cos ψ1

sin ψ2 sin ψ1 − sin ψ2 cos ψ1

)





(30.7)

and verify that these do in fact comprise a complete set of orthogonal projection
matrices, and moreover that they possess the anticipated trace relations; i.e.,
that they are trace-wise orthonormal:

tr
[
PiPj

]
= δij (30.8)

With Mathematica’s aid we find that the elements mi
j = (Ai|M|aj) of the

asymptotic representation of M are given by

sin ω · m1
1 = −a cos ψ1 sin ψ2 + b cos(ψ1 + ψ2) + c cos ψ2 sin ψ1

sin ω · m2
2 = a cos ψ2 sin ψ1 − b cos(ψ1 + ψ2) − c cos ψ1 sin ψ2

sin ω · m1
2 = − 1

2 (a − c) sin 2ψ2 + b cos 2ψ2

sin ω · m2
1 = 1

2 (a − c) sin 2ψ1 − b cos 2ψ1

(30.9)

To express these results in terms of {a, b, c} we bring into play the identities

cos[arctan x] = 1√
1 + x2

, sin[arctan x] = x√
1 + x2

of which
cos[2arctan x ] = 1 − x2

1 + x2

sin[2arctan x ] = 2x
1 + x2

cos[arctan x + arctan y ] = 1 − xy√
1 + x2

√
1 + y2

sin[arctan x − arctan y ] = x − y√
1 + x2

√
1 + y2

are corollaries. Let (30.4) be abbreviated ψ1 = tan–1 x, ψ2 = tan–1 y. We then
have

m1
1 = −ay + b(1 − xy) + cx

x − y

m2
2 = ax − b(1 − xy) − cy

x − y

m1
2 = −(a − c)y + b(1 − y2)

x − y

√
1 + x2

1 + y2

m2
1 = (a − c)x − b(1 − x2)

x − y

√
1 + y2

1 + x2
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Assigning to {x, y} the values

x = −b +
√

b2 − ac
c

, y = −b −
√

b2 − ac
c

taken from (30.2), we obtain (after some fairly heroic simplification)

m1
1 = 1

2 (a + c)

m2
2 = 1

2 (a + c)

m1
2 = − 1

2

√
(a − c)2 + 4b2

m2
1 = − 1

2

√
(a − c)2 + 4b2






(30.10)

From these results we have

tr‖mi
j‖ = a + c = tr M

det‖mi
j‖ = ac − b2 = det M

(30.11)

which conform to the observation11 that basis transformations—in this instance
{ (

1
0

)
,

(
0
1

) }
−→

{
|a1) =

(
cos ψ1

sin ψ1

)
, |a2) =

(
cos ψ2

sin ψ2

) }

—are accomplished invariably by similarity transformations:

‖mi
j‖ = SMS –1

From (23.1) and (30.6) we obtain

S = csc ω

(
− sin ψ2 cos ψ2

sin ψ1 − cos ψ1

)
, S –1 =

(
cos ψ1 cos ψ2

sin ψ1 sin ψ2

)

and from SMS –1 are gratified to recover precisely (30.9). The result just
established—which can be summarized

(
a b
b c

)
−−−−−−−−−−−−−−−−−−−−→

asymptotic representation

(
p q
q p

)
(31)

with p = 1
2 (a+ c), q = − 1

2

√
(a − c)2 + 4b2 —possesses a certain elegant charm,

since {p, q} were encountered already at (29.2) as fragments of the (shared)
eigenvalues

λ± = p ∓ q

11 See again (23.2) on page 7.
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The following special cases are of some interest:

(
a b
b c

)
−−−−−−−−−−−−→

b=0




1
2 (a + c) − 1

2 (a − c)

− 1
2 (a − c) 1

2 (a + c)





(
a b
b c

)
−−−−−−−−−−−−→

c=0




1
2a − 1

2

√
a2 + 4b2

− 1
2

√
a2 + 4b2 1

2a





(
a b
b c

)
−−−−−−−−−−−−→

c=a

(
a −b

−b a

)

(
a b
b c

)
−−−−−−−−−−−−→

c=−a




0 −

√
a2 + b2

−
√

a2 + b2 0



 (*)

(
a b
b c

)
−−−−−−−−−−−−→

b2 =ac




1
2 (a + c) − 1

2 (a + c)

− 1
2 (a + c) 1

2 (a + c)





All of those asymptotic matrices exhibit the distinctive symmetry structure
of (31). As they must, but which is nevertheless a bit surprising. For we
cannot generally expect similarity transformations (recall (23.2)) to preserve
symmetry.12 The symmetry of the asymptotic representation ‖mi

j‖ of M, which
emerged at (30.10), derives from the circumstance that the structure of S is
“tuned” to conform to that of M, in the sense that its elements are assembled
in a very paticular way from those of M.

Concluding remarks. Early on in their discussion of Tzitzeica surfaces,13 Rogers
& Schief remark that “hyperbolic surfaces Σ can always be parameterized in
terms of real asymptotic coordinates. In this case [meaning unspecified], the
Gauss equations take the form. . . ” whereupon they write a version of the Gauss
equations in which the parameters e and g (diagonal elements of H) have been
set equal to zero. I undertook this little project to discover what “this case”
might mean, my initial hunch being that in asymptotic coordinates the diagonal
elements invariably vanish. That conjecture is contradicted (except in the case
marked *) by the preceding examples, and was anyway shown to be untenable
when at (23.2) it was established that the trace is invariant under all basis
transformations. For certainly it is not the case that trH = 0 holds universally.

The only Tzitzeica surface presently known to me is H. Jonas’ “hexenhut,”

z(x2 + y2) = α2 : α2 = 2
3
√

3

12 Symmetry of M =⇒ symmetry of SMS –1 if and only if S –1 = kS T.
13 Bäcklund and Darboux Transformations: Geometry & Modern Applications

in Soliton Theory (2002), Chapter 3, page 89.
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which is a surface of revolution with everywhere negative curvature (see Rogers
& Schief, pages 105–106). In “Geodesics on the Pseudosphere & Hexenhut”
(January 2016) I looked to the asymptotic parameterization of the hexenhut,
and found

h11 = h22 = α2 4β2 − 3
32β3

· 1√
nnn···nnn

h12 = h21 = α2 4β2 + 3
32β3

· 1√
nnn···nnn

: β =
√

3
2

but neglected to notice that the stated value of β implies h11 = h22 = 0; i.e.,

Hasymptotic =
(

0 f
f 0

)
with f = 2

9
1√
nnn···nnn

But that attractive result raises a fresh question. For when I worked from the
“natural” parameterization

rrr =




f(u) cos v
f(u) sin v

u



 with f(u) = α/
√

u

I found

Hnatural =
(

e 0
0 g

)
with






e = − 3α
2u

√
4u3 + α2

g = 2uα√
4u3 + α2

which, though symmetric, is not traceless. I presently understand this seeming
contradiction as evidence that it is mistake—at least so far as concerns H,
into which second derivatives enter in an essential way—to conflate parameter
transformations and basis transformations. I will take up this issue in a
companion essay.


